Today while we were tallying our stock of Anise Swallowtail (Papilio zelicaon) chrysalises, we took a few pictures of a few chrysalises that apparently formed while the caterpillar's osmetarium was still everted. During the transitional phase between the larval and pupal stage in holometamorphic (complete metamorphic) insects, some parts of the larval morphology that are irrelevant to the formation of the adult are often dissolved and released as waste upon adult eclosion (sometimes also immediately before pupation). Contrary to popular belief, however, the pupal stage doesn't completely break down all of the larval parts into some sort of nutrient soup. While in some respects, this is certainly true, much of the adult body parts and organs (particularily the reproductive structures) are already at least partially formed in the caterpillar stage; the change between stages is not nearly as dramatic as it is made out to be. (The larval head will eventually become the adult head, the true larvae legs will become the adult legs, and so forth.) After all, there is strong evidence that holometabolism evolved from hemimetabolism (incomplete metamorphisis). An example of a caterpillar organ that is probably not utilized in adult formation is, apparently, the osmetarium in swallowtails (Papilionidae). This pair of stinky horns sequesters or synthesizes certain toxins (usually some form of butryic acid) designed to ward off both motion-sensitive (via retraction speed and waving of the horns in a batting motion) and chemical-sensitive predators. No such organ counterpart exists in the adult. Even when the caterpillar becomes a prepupa, the horns still remain functional to some extent: they are able to evert the horns when sufficiently agitated but are unable to retract them back into the thorax (at this stage the thorax is probably no longer quite the same as it was before!). Evertion of the osmetarium appears to be a reflex and thus even the caterpillar seems to have limited control over this. Once the horns are out, they hang out even after pupation! - Brian
Comments
|
Timeline 2012–2017
Albany, California This timeline is a series of daily posts recording our observations on and experiences with various insects in Albany California and surrounding areas, from 2012-2017. Since we did not publish this site until 2016, posts before that were constructed retroactively. Starting in August 2017, we moved to Ithaca, New York; posts from there on can be viewed at Timeline 2017-present: Ithaca, New York. Archives (1,011)
August 2017 (49) July 2017 (121) June 2017 (79) May 2017 (77) April 2017 (91) March 2017 (35) February 2017 (12) January 2017 (10) December 2016 (12) November 2016 (26) October 2016 (49) September 2016 (84) August 2016 (94) July 2016 (99) June 2016 (53) May 2016 (21) April 2016 (4) January 2016 (1) August 2015 (3) July 2015 (3) June 2015 (2) June 2014 (3) May 2014 (1) April 2014 (3) March 2014 (3) December 2013 (2) November 2013 (2) October 2013 (5) September 2013 (11) August 2013 (15) July 2013 (9) June 2013 (5) May 2013 (4) April 2013 (3) March 2013 (2) February 2013 (3) January 2013 (2) December 2012 (2) November 2012 (1) October 2012 (2) September 2012 (2) August 2012 (5) July 2012 (1) June 2012 (1) Authors
![]() ![]() Full Species List (Alphabetical by scientific name) Note: - Not every species we encounter is necessarily presented on this site, rather a selection of those that were of particular interest to us and that we felt were worth documenting. - We can't guarantee that all species have been identified accurately, particularly taxa we are not as familiar with. Lepidoptera Actias luna Adelpha californica Agraulis vanillae Allancastria cerisyi Antheraea mylitta Antheraea polyphemus Anthocharis sara Argema mimosae Attacus atlas Battus philenor hirsuta Bombyx mori Caligo atreus Callosamia promethea Coenonympha tullia california Citheronia regalis Cricula trifenestrata Danaus plexippus Eacles imperialis Erynnis tristis Estigmene acrea Eumorpha achemon Eupackardia calleta Furcula cinereoides Heliconius erato Heliconius hecale Heliconius sapho Heliconius sara Hyalophora cecropia Hyalophora columbia Hyalophora euryalus Hylephila phyleus Hyles lineata Junonia coenia Langia zenzeroides formosana Lophocampa maculata Manduca sexta Morpho peleides Nymphalis antiopa Orgyia vetusta Orthosia hibisci quenquefasciata Pachysphinx modesta Papilio cresphontes Papilio eurymedon Papilio glaucus Papilio machaon oregonius Papilio multicaudata Papilio polyxenes asterius Papilio rumiko Papilio rutulus Papilio zelicaon Phyciodes mylitta Phyciodes pulchella Pieris rapae Plejebus acmon Poanes melane Polites sabuleti Polygonia satyrus Pyrgus communis Rothschildia jacobaeae Samia cynthia advena Samia ricini Smerinthus cerisyi Smerinthus ophthalmica Strymon melinus Trichoplusia ni Uresephita reversalis Vanessa annabella Vanessa atalanta Vanessa cardui Unidentified Lepidoptera Hybrids Papilio glaucus × Papilio rutulus Papilio polyxenes asterius × Papilio zelicaon Orthoptera Melanoplus devastator Phaneroptera nana Pristoceuthophilus pacificus Scudderia mexicana Trimerotropis pallidipennis Phasmatodea Carausius morosus Phyllium giganteum Mantodea Mantis religiosa Phyllocrania paradoxa Hymenoptera Apis mellifera Bombus vosnesenskii Brachymeria ovata Linepithema humile Pediobius sp. Polistes dominula Xylocopa varipuncta Unidentified Diptera Lucilia sericata Unidentified Hemiptera Brochymena sp. Leptoglossus sp. Nezara viridula Odonata Argia vivida Libellula croceipennis Coleoptera Coccinella septempunctata Cycloneda polita Diabrotica undecimpunctata Hippodamia convergens Araneae (Class: Arachnida) Araneus diadematus Phidippus johnsoni |